Abstract

Understanding the complete reaction network and mechanism of methanol-to-hydrocarbons remains a key challenge in the field of zeolite catalysis and C1 chemistry. Inspired by the identification of the reactive surface methoxy species on solid acids, several direct mechanisms associated with the formation of the first C-C bond in methanol conversion have been recently disclosed. Identifying the stepwise involvement of the initial intermediates containing the first C-C bond in the whole reaction process of methanol-to-hydrocarbons conversion becomes possible and attractive for the further development of this important reaction. Herein, several initial unsaturated aldehydes/ketones containing the C-C bond are identified via complementary spectroscopic techniques. With the combination of kinetic and spectroscopic analyses, a complete roadmap of the zeolite-catalyzed methanol-to-hydrocarbons conversion from the initial C-C bonds to the hydrocarbon pool species via the oxygen-containing unsaturated intermediates is clearly illustrated. With the participation of both Brønsted and Lewis acid sites in H-ZSM-5 zeolite, an initial aldol-cycle is proposed, which can be closely connected to the well-known dual-cycle mechanism in the methanol-to-hydrocarbons conversion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.