The published 95% uncertainty of the global surface air-temperature anomaly (GSATA) record through 1980 is impossibly less than the 2σ = ±0.25 °C lower limit of laboratory resolution of 1 °C/division liquid-in-glass (LiG) thermometers. The ~0.7 °C/century Joule-drift of lead- and soft-glass thermometer bulbs renders unreliable the entire historical air-temperature record through the 19th century. A circa 1900 Baudin meteorological spirit thermometer bulb exhibited intense Pb X-ray emission lines (10.55, 12.66, and 14.76 keV). Uncorrected LiG thermometer non-linearity leaves 1σ = ±0.27 °C uncertainty in land-surface air temperatures prior to 1981. The 2σ = ±0.43 °C from LiG resolution and non-linearity obscures most of the 20th century GSATA trend. Systematic sensor-measurement errors are highly pair-wise correlated, possibly across hundreds of km. Non-normal distributions of bucket and engine-intake difference SSTs disconfirm the assumption of random measurement error. Semivariogram analysis of ship SST measurements yields half the error difference mean, ±½Δε1,2, not the error mean. Transfer-function adjustment following a change of land station air-temperature sensor eliminates measurement independence and forward-propagates the antecedent uncertainty. LiG resolution limits, non-linearity, and sensor field calibrations yield GSATA mean ±2σ RMS uncertainties of, 1900–1945, ±1.7 °C; 1946–1980, ±2.1 °C; 1981–2004, ±2.0 °C; and 2005–2010, ±1.6 °C. Finally, the 20th century (1900–1999) GSATA, 0.74 ± 1.94 °C, does not convey any information about rate or magnitude of temperature change.