Magnetic nanoparticles are regarded as a promising drug delivery vehicle with the improved efficacy and lowered side effects for antitumor therapy. Herein, the poly lactic-co-glycolic acid (PLGA) modified magnetic nanoplatform was synthesized using superparamagnetic γ-Fe2O3 nanoparticles (MNPs) as a core, and then labelled with polyethylenimine (PEI)-conjugated fluorescein isothiocyanate (FITC), and simultaneously loaded with antitumor drug paclitaxel (PTX) for theranostic analysis of antitumor effects investigated in human brain glioblastoma U251 cells. As a result, the prepared PEI-PLGA-MNPs showed a relatively round sphere with an average size of 80 nm approximately, and the FITC-labeling PEI-PLGA-MNPs were efficiently endocytosed by the U251 cells for cellular imaging. Moreover, the fabricated PEI-PLGA-PTX-MNPs also demonstrated an inhibition of the targeted cell proliferation and migration, and a programmed cell death, via both apoptosis modulating by a burst of reactive oxygen species (ROS) and autophagy with accumulation of autophagosomes and LC3-II signals detected in the treated glioblastoma U251 cells after uptaking. Therefore, the constructed nanoplatform could be effectively applied for simultaneous cellular imaging and drug delivery in human brain glioblastoma treatment in future.
Read full abstract