Abstract
Superparamagnetic γ-Fe2O3 nanoparticles (5 nm diameter) were synthesized in water. The bare particles exhibit good colloidal stability at ∼pH 2 because of the strong electrostatic repulsion with a surface charge of +25 mV. The polyacrylic acid (PAA)-coated particles exhibit remarkable colloidal stability at ∼pH 7 with abundant free carboxyl groups as reactive sites for subsequent functionalization. In this work, we used zeta potential analysis, transmission electron microscopy, small angle X-ray scattering, and Inductively coupled plasma mass spectrometry to investigate the adsorption behavior of U (VI) on bare and coated colloidal superparamagnetic nanoparticles at pH 2 and pH 7. At pH 2, uranyl ion (UO22+) absorbed on the surface of the bare particles with decreasing particle surface charge. This induced particle agglomeration. At pH 7, uranyl ion (UO22+) hydrolyzed and formed plate-like particles of uranium hydroxide that were ∼50 nm in diameter. The PAA-coated iron oxide nanoparticles absorbed on the surface of these U (VI) hydroxide plates to form large aggregates that precipitate to the bottom of the dispersion. At both pH 2 and pH 7, the resulting U (VI)/nanoparticle complex can be easily collected and extracted from the aqueous environment via an external magnetic field. The results show that both bare and polymer-coated superparamagnetic γ-Fe2O3 nanoparticles are potential absorbents for removing U (VI) from water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.