Abstract
Superparamagnetic γ-Fe2O3@SiO2@lisinopril (MNPs-Lisinopril) nanoparticles are T2 and T2* negative contrast agents for magnetic resonance imaging. In this work, we report the preparation of lisinopril-coated MNPs for the first time as new T2 and T2* negative contrast agent for in vitro and in vivo MRI imaging and demonstrate the potential it simultaneously for drug delivery system, diagnose the tumors and MRI contrast agent. Measurements on the relaxivities (r1, r2 and r2*) of the MNPs-Lisinopril were determined in deionized water (in vitro). Furthermore, after subcutaneous injection of the MNPs-Lisinopril into 4T1 (ATCC® CRL2539™) tumor in BALB/c mice, the relaxivities were determined by a 1.5 T MRI apparatus (in vivo). T2- and T2*-weighted MRI images of MNPs-Lisinopril showed that the MR signal intensity decreased significantly with increasing nanoparticle concentration in water. With measured r2 values up to 236.66 mM-1s -1, our MNPs-Lisinopril show better performance than commercial alternatives. Also we tested drug release of Lisinopril coated MNPs at two different pHs. The MNPs- Lisinopril is a pH-sensitive drug delivery system and releases different amounts of lisinopril from MNPs-Captopril in different pHs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of materials science. Materials in medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.