Salmonella spp. have been shown to migrate to the internal regions of meat cuts. Storage conditions and the presence of proteolytic microbiota can influence this process. Our study assessed the impact of storage time, temperature, and the presence of proteolytic psychrotrophic bacteria on migration. Samples of previously frozen chicken breast with skin and bone were then sterilized using gamma ray irradiation and a cobalt-60 source (11 KGy) and them were inoculated with cultures of S. Enteritidis, S. Enteritidis and psychrotrophs, S. Heidelberg, or S. Heidelberg and psychrotrophs. Inoculated samples were stored for 6, 12, 24, 48, or 168 h at 2, 7, or −30 °C. After treatment, samples were divided into similar-sized segments and bacterial counts were determined in different regions (A – superface, B – intermediate region, and C – internal region). S. Heidelberg and S. Enteritidis both demonstrated successful internal migration for each time, temperature, and bacterial combination (p < 0.05). Our data revealed that Salmonella migration proceeded for 24 h, but slowed at 48 h (p < 0.05). S. Enteritidis with psychrotrophs showed a low amount of internal migration (p < 0.05). We therefore conclude that Salmonella spp. are able to migrate into the internal regions of meat cuts in a short period of time, even at low temperatures. The presence of proteolytic psychrotrophs inhibits the migration of S. Enteritidis.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access