Residual surface deformation resulting from abandoned mined-out areas can lead to severe damage to ground structures (e.g., buildings and infrastructure in mining areas) and the local ecological environment. Long-term monitoring and analyses of surface deformation characteristics of abandoned mined-out areas are significant for preventing potential disasters. In this study, a detailed field investigation first was conducted in Ying’an and Baoshan coal mines located in Jilin Province, China, to survey mining-induced disasters in the mining areas. Based on the 40 Sentinel-1A images acquired from 14 February 2017 to 17 May 2020, small baseline subset interferometry synthetic aperture radar (SBAS-InSAR) technology was employed to obtain the time-series residual surface deformation. Validation of the SBAS-derived results is performed by comparing with the results obtained via leveling measurements. The root mean square error (RMSE) between SBAS-derived and leveling measurements results was found to be 1.144 mm, reflecting a fairly good agreement. Furthermore, the ordinary Kriging interpolation approach was adopted to obtain information on the deformation across the entire area. The spatial–temporal evolution characteristics of the derived subsidence bowls in multiple mined-out areas were revealed. The deformation characteristics for the abandoned mined-out areas in different periods were not completely consistent. Finally, the potential mechanism underlying the inconsistency in the subsidence associated with underground coal exploitation is analyzed. The findings of this study can provide insights into local construction and ecological improvement as well as guidance for the prediction of deformation in abandoned mined-out areas.
Read full abstract