Mechanoresponsive colloidal photonic crystals embedded in elastic solid matrices exhibit tunable optical properties under mechanical force, showing great potential for various applications. However, the response of colloidal crystals embedded in a liquid matrix remains largely unexplored. In this study, we investigate the structural and optical transitions of colloidal crystals composed of particles suspended in a liquid oligomer under pressing and shear forces. We observe that pressing induces a transition from an ordered to a disordered particle arrangement, while subsequent bending shear, such as simple hand-flipping, restores the ordered structure. This reversible transition produces press-induced optical traces that can be erased by subsequent shear, making this material a promising candidate for applications in reversible direct-writing photonic paper and anti-counterfeiting technologies. Our work provides new insights into the structural dynamics of liquid colloidal photonic crystals under mechanical force and highlights their potential for mechanoresponsive applications.
Read full abstract