Abstract
Lightweight construction in modern car design leads to an increased usage of various aluminium semi-finished products. Besides sheet material, aluminium extrusion profiles are frequently used due to their high stiffness and variety of possible cross-sections. However, similar to sheet material, aluminium profiles exhibit limited formability in comparison to mild steel materials. One possibility to increase the forming limits of precipitation hardened aluminium alloys is the so-called Tailored Heat Treatment technology. By a local short-term heat treatment, the material is softened and the material flow can be controlled to reduce stresses in critical forming zones. The purposeful definition of the heat treatment zones is mandatory to improve the forming results. Therefore, numerical methods are necessary. In this investigation, a numerical process chain is presented. It combines the thermo-mechanical simulation of a local laser heat treatment with a subsequent bending process of the heat-treated profile using the alloy EN AW-6082. The temperature distribution, mechanical properties, and finally, the bending result of the numerical model are validated by experimental tests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advanced Modeling and Simulation in Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.