Abstract

The biomechanics of embryonic notochords are studied using an elastic membrane model. An initial study varying internal pressure and stiffness ratio determines tension and geometric ratios as a function of internal pressure, membrane stiffness ratio, and cell packing pattern. A subsequent three-point bending study determines flexural rigidity as a function of internal pressure, configuration, and orientation. Flexural rigidity is found to be independent of membrane stiffness ratio. Controlling for number and volume of cells and their internal pressure, the eccentric staircase pattern of cell packing has more than double the flexural rigidity of the radially symmetric bamboo pattern. Moreover, the eccentric staircase pattern is found to be more than twice as stiff in lateral bending than in dorsoventral bending. This suggests a mechanical advantage to the eccentric WT staircase pattern of the embryonic notochord, over patterns with round cross-section.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call