We have developed and tested a new detector for use in the fast neutron (FN) imaging radiography applications, which is distinct from other presently known FN imagers. Our device implements a neutron-sensitive scintillator attached to a position-sensitive photomultiplier tube, and operates in the event-by-event readout mode, acquiring energy, timing, and pulse shape information for all detected radiation events. This information is used to help separate events of FN interactions in the scintillator from the background events, caused by the electronics noise and by other types of background radiation. The detector performance for FN imaging application was tested using the D-D neutron generator, designed and manufactured by Adelphi Technology, Inc. This essentially point-like neutron source operates in continuous mode, producing up to 109 of 2.5 MeV neutrons per second. Samples made of metals, plastic, and other materials were used to measure the detector resolution, efficiency and uniformity. Results of these tests are presented and discussed. Both X and Y position resolutions of the FN imaging detector are estimated to be less than 0.5 mm (sigma). Because this detector shows the fraction-of-a-millimeter resolution desirable for most of FN applications, is capable of good neutron-background separation, and is built using radiation hard materials, we believe that it could be a good alternative to other FN imaging systems based on CCD or solid state detectors. In addition, because of its sub-nanosecond timing resolution, it is suitable for the time-of-flight energy-resolved FN imaging.