Abstract
This paper presents a high-stability and low-jitter Arbitrary Timing Generator (ATG) designbased on the Xilinx Field Programmable Gate Array (FPGA) and its special integrated delay line. In recent years, FPGA-based or application specific integrated circuit-based delay lines have been used to achieve picosecond-level timing resolution. Devices with pure digital delay methods can only acquire triggers at the clock rising edges when triggered externally. Therefore, there is a large time irregularity caused by the uncertainty of the entry time of the trigger, which is difficult to compensate and leads to a large time jitter of outputs. We describe the designof an ATG that includes jitter self-measurement and calibration methods, which is available for both internal and external trigger modes. This structure is completely based on the FPGA's own resources and has the advantages of being simple and flexible. Experimental results show a sub-nanosecond timing resolution of 78 ± 20ps with a minimum of 120ps and a time jitter of 160 ± 20ps in the external trigger mode after compensation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.