Abstract

Time-of-flight (TOF) techniques are standard techniques in high energy physics to determine particles’ propagation directions. Since particle velocities are generally close to c, the speed of light, and detector typical dimensions at the metre level, the state-of-the-art TOF techniques should reach sub-nanosecond timing resolution. Among the various techniques already available, the recently developed ring oscillator time-to-digital converter (TDC) ones, implemented in low-cost programmable logic circuits like FPGA (field programmable gate array), feature a very interesting figure of merit since a very good timing performance may be achieved with limited processing resources. This issue is relevant for applications where unmanned sensors should have the lowest possible power consumption. Actually this paper describes in detail the application of this kind of TOF technique to muon tomography of geological bodies. Muon tomography aims at measuring density variations and absolute densities through the detection of atmospheric muon flux’s attenuation, due to the presence of matter. When the measured fluxes become very low, an identified source of noise comes from backwards propagating particles hitting the detector in a direction pointing to the geological body. The separation between through-going and backward-going particles on the basis of the TOF information is therefore a key parameter for the tomography analysis and subsequent forecasts. This paper describes a TDC implementation fulfilling the requirements of a TOF measurement applied to muon tomography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.