In this paper, the subharmonic energy gap structures (SGS) and induced superconductivity, due to multiple Andreev reflections, in indium gallium arsenide (In0.75Ga0.25As) two-dimensional electron gas (2DEG) are discussed at different temperatures and magnetic fields. Strong suppression of both SGS and induced gap are observed as a function of temperature and magnetic field. The differential conductance of the Josephson junctions (JJs) as a function of external in-plane magnetic fields shows an asymmetric response to positive and negative magnetic field sweeps with a conductance maximum at close to zero. Our approach to quantum transport studies of the ballistic 2D JJs may open a new road towards scalable and integrated quantum processing and help pave the way for the development of topological circuits for the realization of the next generation of quantum processors.