The mechanical properties and constitutive model of unsaturated soils under cyclic loading are crucial for understanding the behavior of foundations and slopes subjected to dynamic motions such as earthquakes and traffic loading. In this study, multilevel strain-controlled cyclic simple shear tests of unsaturated weathered red mudstone (WRM) were conducted. The detailed investigation focused on cyclic responses, including shear stress-strain behavior and volume change, strain-dependent secant shear modulus and damping ratio, and stress–dilatancy behavior. This study revealed the significant influences of the degree of saturation and vertical stress on these responses, with the initial static shear stress mainly affecting the shear stress-strain behavior and volume changes at the initial loading stage. Based on the experimental observations, a cyclic constitutive model was proposed for unsaturated WRM. The model incorporates a slightly revised Davidenkov model and Masing criterion to generate shear stress-strain hysteresis loops with or without initial static shear stress. Additionally, a stress-dilatancy equation was included to capture the volume changes during cyclic loading. The proposed model was verified by comparing representative test data and calculation results, demonstrating the excellent performance of the proposed model in modeling the main features of unsaturated WRM under cyclic loading.