Abstract
Thermo-mechanical fatigue (TMF) failure is one of the major concerns for aero-engine turbine discs under complex service loading conditions. By conducting both in-phase (IP) and out-of-phase (OP) TMF tests, the stress-strain hysteresis loops and the cyclic stress responses were analyzed for the third-generation nickel-based powder metallurgy (P/M) superalloy FGH4098. To reveal the failure mechanism, advanced microscopy analysis was carried out to characterize the fracture surface and microstructure of the alloy after failure. The phase angle between alternating mechanical and thermal loads plays an important role for the magnitude and evolution of mean stress. According to SEM fractography, the crack growth exhibits intergranular fracture under IP TMF and transgranular fracture under OP TMF. From the electron backscatter diffraction (EBSD) and transmission electron microscope (TEM) characterization results, the geometrically necessary dislocation (GND) density is higher for IP TMF, indicating more severe plastic deformation. The material shows cyclic softening in the high-temperature half-cycle, but cyclic hardening in the low-temperature half-cycle. The cyclic deformation is mainly related to dislocation activities under IP loading conditions, for which fatigue damage dominates the failure process. Under OP loading conditions, the deformation behavior is mainly associated with the generation of stacking faults (SF), and its failure mechanism includes both fatigue and oxidation damage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.