Abstract

This study presents a novel approach to forecasting the evolution of hysteresis stress-strain response of different types of soils under repeated loading-unloading cycles. The forecasting is made solely from the knowledge of soil properties and loading parameters. Our approach combines mathematical modeling, regression analysis, and Deep Neural Networks (DNNs) to overcome the limitations of traditional DNN training. As a novelty, we propose a hysteresis loop evolution equation and design a family of DNNs to determine the parameters of this equation. Knowing the nature of the phenomenon, we can impose certain solution types and narrow the range of values, enabling the use of a very simple and efficient DNN model. The experimental data used to develop and test the model was obtained through Torsional Shear (TS) tests on soil samples. The model demonstrated high accuracy, with an average R² value of 0.9788 for testing and 0.9944 for training.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.