Chemical reactions and diffusion are two basic mechanisms governing the dynamics of molecules in a fluid. As such, they play a critical role in molecular communication for channel modeling, design of detection rules, implementation of molecular circuits for computation, and modeling interactions with external biochemical systems. For finite numbers of information-carrying molecules, stochastic models naturally arise with the simplest example given by the Wiener process, often known as Brownian motion. Nevertheless, the Wiener process fails to be accurate when external forces, friction, and chemical reactions are present. Recently, there have been several contributions that tailor molecular communication systems to these more challenging channel conditions. In this paper, we first overview a general family of stochastic models of reaction and diffusion systems, including both Langevin diffusion and the reaction-diffusion master equation. These models form a basis for the use of these models as molecular communication channels, from which modulation and detection schemes can be developed. We survey recent results on the design of these schemes, with a focus on a recently developed approach which is robust to a wide range of channel models, known as equilibrium signaling. We then turn to the implementation of these detection schemes and related parameter estimation problems via stochastic molecular circuits, based on stochastic chemical reaction networks. Finally, interactions between molecular communication systems and stochastic biological systems as well as open problems are discussed. Our overarching goal is to highlight how the consideration of general stochastic models of reaction and diffusion can be utilized in order to widen the application of molecular communications both within engineered systems, and also as motivation for advances in the mathematical characterization of these models.