Abstract

BackgroundComputational models play an increasingly important role in systems biology for generating predictions and in synthetic biology as executable prototypes/designs. For real life (clinical) applications there is a need to scale up and build more complex spatio-temporal multiscale models; these could enable investigating how changes at small scales reflect at large scales and viceversa. Results generated by computational models can be applied to real life applications only if the models have been validated first. Traditional in silico model checking techniques only capture how non-dimensional properties (e.g. concentrations) evolve over time and are suitable for small scale systems (e.g. metabolic pathways). The validation of larger scale systems (e.g. multicellular populations) additionally requires capturing how spatial patterns and their properties change over time, which are not considered by traditional non-spatial approaches.ResultsWe developed and implemented a methodology for the automatic validation of computational models with respect to both their spatial and temporal properties. Stochastic biological systems are represented by abstract models which assume a linear structure of time and a pseudo-3D representation of space (2D space plus a density measure). Time series data generated by such models is provided as input to parameterised image processing modules which automatically detect and analyse spatial patterns (e.g. cell) and clusters of such patterns (e.g. cellular population). For capturing how spatial and numeric properties change over time the Probabilistic Bounded Linear Spatial Temporal Logic is introduced. Given a collection of time series data and a formal spatio-temporal specification the model checker Mudi (http://mudi.modelchecking.org) determines probabilistically if the formal specification holds for the computational model or not. Mudi is an approximate probabilistic model checking platform which enables users to choose between frequentist and Bayesian, estimate and statistical hypothesis testing based validation approaches. We illustrate the expressivity and efficiency of our approach based on two biological case studies namely phase variation patterning in bacterial colony growth and the chemotactic aggregation of cells.ConclusionsThe formal methodology implemented in Mudi enables the validation of computational models against spatio-temporal logic properties and is a precursor to the development and validation of more complex multidimensional and multiscale models.Electronic supplementary materialThe online version of this article (doi:10.1186/s12918-014-0124-0) contains supplementary material, which is available to authorized users.

Highlights

  • Computational models play an increasingly important role in systems biology for generating predictions and in synthetic biology as executable prototypes/designs

  • In this paper we present a model checking methodology for the validation of multidimensional computational models, and its application to two multicellular population based examples from systems biology

  • In both cases our assumption was that no prior knowledge is available and a frequentist model checking approach was employed

Read more

Summary

Introduction

Computational models play an increasingly important role in systems biology for generating predictions and in synthetic biology as executable prototypes/designs. For real life (clinical) applications there is a need to scale up and build more complex spatio-temporal multiscale models; these could enable investigating how changes at small scales reflect at large scales and viceversa. Traditional in silico model checking techniques only capture how non-dimensional properties (e.g. concentrations) evolve over time and are suitable for small scale systems (e.g. metabolic pathways). For real life application areas such as medicine or biotechnology there is a need to scale up and build more complex multiscale models which cover multiple spatial and/or temporal scales [6,7]; the Virtual Physiological Human [8] and High-Definition Physiology [9] projects are international initiatives attempting to (partially) address this challenge

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call