Abstract

This study discusses the calculation of entropy of discrete-time stochastic biological systems. First, measurement methods of the system entropy of discrete-time linear stochastic networks are introduced. The system entropy is found to be characterized by system matrices of the discrete-time biological systems. Secondly, the system entropy of nonlinear discrete-time stochastic biological systems is discussed and is calculated based on a global linearization method. The approximation of the values of system entropy of nonlinear stochastic systems needs to solve an optimization problem that is constrained by a kind of linear matrix inequality (LMI). Finally, a practical biochemical system is provided to verify the effectiveness of the proposed calculation method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call