ABSTRACT Hydrological models are vital for water management to determine in-stream flow, irrigational water, domestic water supply, and biodiversity conservation. This study formulates a hydrological model with a novel approach for streamflow and sediment load in the QGIS-supported Soil and Water Assessment Tool for the Halda River catchment, a unique ecological habitat for natural carp spawning and freshwater sources. The daily simulation uses an innovative stage–discharge relationship technique from available 15-day interval flow data. The model evaluation parameters R2 values 0.80 and 0.62, and NS values 0.81 and 0.61 for calibration and validation of streamflow suggested excellent agreement in the seasonal cycle and most of the monsoon peak flow. The streamflow/precipitation ratio indicates a significant influence of groundwater through infiltration. The baseflow shows a decreasing trend. The sediment load based on suspended sediment concentration at a downstream location is 1,625 tons/day. On the contrary, the model prediction is 30 times lower. The scattered sediment load data support the model estimate by considering relatively lower intervention or land use change in its upstream. This model provides a baseline for daily flow and sediment load for scenario modeling (e.g., climate change, land use change) for environmental flow estimation of the fish habitat, freshwater supply, irrigation, and salinity intrusion.