Cooperative survival "games" are situations in which, during a sequence of catastrophic events, no one survives unless everyone survives. Such situations can be further exacerbated by uncertainty over the timing and scale of the recurring catastrophes, while the resource management required for survival may depend on several interdependent subgames of resource extraction, distribution, and investment with conflicting priorities and preferences between survivors. In social systems, self-organization has been a critical feature of sustainability and survival; therefore, in this article we use the lens of artificial societies to investigate the effectiveness of socially constructed self-organization for cooperative survival games. We imagine a cooperative survival scenario with four parameters: scale, that is, n in an n-player game; uncertainty, with regard to the occurrence and magnitude of each catastrophe; complexity, concerning the number of subgames to be simultaneously "solved"; and opportunity, with respect to the number of self-organizing mechanisms available to the players. We design and implement a multiagent system for a situation composed of three entangled subgames-a stag hunt game, a common-pool resource management problem, and a collective risk dilemma-and specify algorithms for three self-organizing mechanisms for governance, trading, and forecasting. A series of experiments shows, as perhaps expected, a threshold for a critical mass of survivors and also that increasing dimensions of uncertainty and complexity require increasing opportunity for self-organization. Perhaps less expected are the ways in which self-organizing mechanisms may interact in pernicious but also self-reinforcing ways, highlighting the need for some reflection as a process in collective self-governance for cooperative survival.
Read full abstract