Abstract

It has been proposed that environmental stress acted as a selection pressure on the evolution of human cooperation. Through agent-based evolutionary modelling, mathematical analysis, and human experimental data we illuminate the mechanisms by which the environment influences cooperative success and decision making in a Stag Hunt game. The modelling and mathematical results show that only cooperative foraging phenotypes survive the harshest of environments but pay a penalty for miscoordination in favourable environments. When agents are allowed to coordinate their hunting intentions by communicating, cooperative phenotypes outcompete those who pursue individual strategies in almost all environmental and payoff scenarios examined. Data from human participants show flexible decision-making in face of cooperative uncertainty, favouring high-risk, high-reward strategy when environments are harsher and starvation is imminent. Converging lines of evidence from the three approaches indicate a significant role for environmental variability in human cooperative dynamics and the species-unique cognition designed to support it.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.