Selective contactless manipulation of organisms with intrinsic mobility from heterogeneous mixture is essential for biomedical engineering and microbiology. Acoustic manipulation, compared to its optical, magnetic, and electrostatic counterparts, provides superior bio-compatibility and additive-free properties. In this study, we present an acoustic manipulation system capable of selectively trapping, translating, rotating, and orienting individual organisms from in-Petri dish organism mixture using a phased transducer array and microscope, by dynamically steering the acoustic field. Specifically, using brine shrimp and zebrafish populations as example, the to-be-manipulated organisms with different sizes or morphologies can be manually designated by the user in microscopic image and interactively localized. Thereafter, the selected organisms can be automatically trapped from the heterogeneous mixture using a multiple focal point-based acoustic field steering method. Finally, the trapped organisms can be translated, rotated, and oriented in regard to the user's distinct manipulation objectives in instant response. In different tasks, closed-loop positioning and real-time motion planning control are performed, highlighting the innovation in terms of automation and accuracy of our manipulation technique. The results demonstrate that our acoustic manipulation system and acoustic field steering method enable selective, stable, precision, real-time, and in-Petri dish manipulation of organisms from heterogeneous mixture.
Read full abstract