Abstract
This study explores the effects of nanoparticles on the dynamics of drop spreading under external vibration, presenting an advance in the understanding of nanofluid behavior on vibrating substrates. This work introduces insights into nanoparticle-mediated drop spreading, offering implications for improving particulate coatings, mini-mixers, and particle segregation technologies. By employing a twofold approach that combines oscillating drop dynamics with internal flow pattern analysis, we find how even small concentrations of hydrophilic or hydrophobized silica nanoparticles inside water sessile droplets significantly alter the spreading process on silanized glass surfaces. Our study allows distinct drop spreading regimes to be identified based on nanoparticle concentration and vibration amplitude, for both hydrophilic and hydrophobized nanoparticles. Through a comprehensive analysis, we demonstrate that the vibration-triggered spreading of nanofluids can lead to a stable and controlled manipulation of complex liquids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.