Abstract

HypothesisPerfluorocarbon is commonly used as a coolant, chemical reaction carrier solvent, medical anti-hypoxic agents and blood substitutes. The realization of non-contact complex manipulation of perfluorocarbon liquids is urgently needed in human life and industrial production. However, most liquid-repellent interfaces are ineffective for the transport of ultra-low surface tension perfluorocarbon liquids, and struggle to maintain good durability due to unstable air or oil cushions in the surface. Therefore, preparing surfaces for stable non-contact complex manipulation of ultra-low surface tension droplets remains a challenge. ExperimentsIn this paper, a novel solution, a photothermal responsive droplet manipulation surface based on polydimethylsiloxane brushes, has been reported. On this surface, droplets with different surface tensions (as low as 10 mN/m) can be efficiently manipulated through induced near-infrared light. Notably, this surface maintains its effectiveness after exposure to extreme anthropogenic conditions. FindingsThe interface effect between perfluorocarbon droplets and polydimethylsiloxane brushes by near-infrared light-induced was investigated in detail. In addition, ultra-low surface tension droplets demonstrate the ability to transport solid particles. The conductive droplets exhibit sophisticated manipulation realizing the controlled switching of smart circuits. This research opens up new possibilities for advancing the capabilities and adaptability of ultralow surface tension droplets in a range of applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.