Abstract

With the rapid advancements in biomedicine, the use of clinical drugs has surged sharply. However, potential hepatotoxicity limits drug exploitation and widespread usage, posing serious threats to patient health. Hepatotoxic drugs disrupt liver enzyme levels and cause refractory pathological damage, creating a challenge in the application of diverse first-line drugs. The activation and deterioration of reactive oxygen and nitrogen species (RONS) and inflammatory signals are key pathological mechanisms of drug-induced liver injury (DILI). Herein, a novel reduced heteropolyacid nanoparticle (RNP) has been developed, possessing high RONS-scavenging ability, strong anti-inflammatory activity, and excellent biosafety. These features enable it to swiftly restore the redox and immune balance of the liver. Intravenous administration of RNP effectively scavenged RONS storm, reversing liver oxidative stress and restoring normal mitochondrial membrane potential and function. Furthermore, by inhibiting c-Jun-N-terminal kinase phosphorylation, RNP facilitated the restoration of nuclear factor erythroid 2-related factor 2-mediated endogenous antioxidant signaling, ultimately rescuing the liver function and tissue morphology in acetaminophen-induced DILI mice. Crucially, the high biocompatible RNP exhibited superior efficacy in the DILI mouse model compared to the clinical antioxidant N-acetylcysteine. This targeted therapeutic approach, tailored to address the onset and progression of DILI, offers valuable new insights into controlling the condition and restoring liver structure and function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.