Abstract We discuss representations of finite groups having a common central 𝑝-subgroup 𝑍, where 𝑝 is a prime number. For the principal 𝑝-blocks, we give a method of constructing a relative 𝑍-stable equivalence of Morita type, which is a generalization of stable equivalence of Morita type and was introduced by Wang and Zhang in a more general setting. Then we generalize Linckelmann’s results on stable equivalences of Morita type to relative 𝑍-stable equivalences of Morita type. We also introduce the notion of relative Brauer indecomposability, which is a generalization of the notion of Brauer indecomposability. We give an equivalent condition for Scott modules to be relatively Brauer indecomposable, which is an analog of that given by Ishioka and the first author.
Read full abstract