Abstract
Owing to the difference in K-theory, an example by Dugger and Shipley implies that the equivalence of stable categories of Gorenstein projective modules should not be a Quillen equivalence. We give a sufficient and necessary condition for the Frobenius pair of faithful functors between two abelian categories to be a Quillen equivalence, which is also equivalent to that the Frobenius functors induce mutually inverse equivalences between stable categories of Gorenstein projective objects.We show that the category of Gorenstein projective objects is a Waldhausen category, then Gorenstein K-groups are introduced and characterized. As applications, we show that stable equivalences of Morita type preserve Gorenstein K-groups, CM-finiteness and CM-freeness. Two specific examples of path algebras are presented to illustrate the results, for which the Gorenstein K0 and K1-groups are calculated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.