Abstract
We give a sufficient condition for the $kG$-Scott module with vertex $P$ to remain indecomposable under taking the Brauer construction for any subgroup $Q$ of $P$ as $k[Q\,C_G(Q)]$-module, where $k$ is a field of characteristic $2$, and $P$ is a wreathed $2$-subgroup of a finite group $G$. This generalizes results for the cases where $P$ is abelian and some others. The motivation of this paper is that the Brauer indecomposability of a $p$-permutation bimodule ($p$ is a prime) is one of the key steps in order to obtain a splendid stable equivalence of Morita type by making use of the gluing method that then can possibly lift to a splendid derived equivalence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.