Abstract

Rickard proved that for certain self-injective algebras, a stable equivalence induced from an exact functor is a stable equivalence of Morita type, in the sense of Broué. In this paper we study singular equivalences of finite-dimensional algebras induced from tensor product functors. We prove that for certain Gorenstein algebras, a singular equivalence induced from tensoring with a suitable complex of bimodules induces a singular equivalence of Morita type with level, in the sense of Wang. This recovers Rickard's theorem in the self-injective case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.