The emission patterns of three greenhouse gasses (GHGs), viz. CH4, CO2, and N2O from landfills, were examined on a lab scale. Three simulated semi-aerobic bioreactor landfills (SABL1, SABL2, SABL3), with respective vent-pipe inner diameters (φ) of 25, 50, and 75mm, were used to investigate their effect on the greenhouse effect (GHE) during the municipal solid waste (MSW) stabilization process. We found that the vent-pipe φ influenced both MSW degradation and GHG emissions, increasing the vent-pipe φ which improved the removal of carbon and nitrogen-based pollutants. The GHG emissions were 364, 356, and 309kg CO2 equivalents per ton of MSW from the SABL2, SABL1, and SABL3, respectively, during the operation of 465days. Of the three GHGs, CH4 influenced the GHE the most, contributing 72.53%, 79.17%, and 71.42% in SABL1, SABL2, and SABL3, respectively. In the same sequence, CO2 (14.87%, 14.06%, and 21.9%) and N2O (12.6%, 6.77%, and 6.69%) were the second and third contributors to the GHE, respectively. Considering the rapidly MSW stabilization and the mitigation of GHG emissions, a vent pipe with φ of 75mm in the SABL column (φ of 800mm) was suggested. Moreover, the GHG mitigation in the SABL should be implemented by prioritizing CH4 collection and oxidation. The results provided a technical guidance for GHG mitigation in MSW management.
Read full abstract