Abstract

The aim of this work is to assess how the presence of cellulose-based bio-plastics influence the biological stabilization of mixed Municipal Solid Waste (MSW). For the scope, two cellulose acetate bio-plastics have been mixed with a synthetic mixed waste to create samples with and without bio-plastics. A self-induced biostabilization has been carried out for 7 and 14 days where temperature and off-gas have been monitored continuously. Results about temperature evolution, O2 consumption, CO2 production and respiratory quotient did not show a substantial difference regarding both the duration of the process and the presence of cellulose-based bio-plastics on the mixture. On the average, the temperature peak and the maximum daily O2 consumption and CO2 production were 52.2°C, 35.81g O2/kg DM *d and 48.95g CO2/kg DM *d respectively. Disintegration of bio-plastics samples after 7 and 14 days were comparable (on the average 23.13%). The self-induced biostabilization gave its main contribution after 4 days and resulted almost finished at the end of the day 7 of the process. Results showed that cellulose-based bio-plastics did not give a negative effect on mixed MSW biological stabilization and suggest a possible management, aiming at energy recovery of the outputs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call