AbstractThe ten-fold surface of the decagonal Al72Ni11Co17 (d-Al-Ni-Co) quasicrystal has been investigated using low energy electron diffraction (LEED), spot profile analysis LEED (SPA- LEED), Auger electron spectroscopy (AES) and scanning tunnelling microscopy (STM). This was done as a function of both annealing temperature and annealing time. The long-range order of the surface, as indicated by LEED, increases both as a function of annealing time and temperature. STM shows the surface to be rough and cluster-like at low annealing temperatures (≤725 K), whilst annealing to temperatures in excess of 725 K results in the formation of terraces. These terraces are small (≤ 100 Å width) at lower annealing temperatures and increase in size (100 Å ≤ x ≤ 500 Å) as the annealing temperature is increased (≥ 850 K). They are characterised by the presence of three-fold protrusions which align preferentially. STM images show single height steps as expected due to the periodicity of d-Al-Ni-Co in the z direction. To date it has not been possible to obtain atomic resolution, although this work is continuing.
Read full abstract