Abstract

In order to investigate how metal growth and metal-oxide interaction depend on the chemical properties of oxide surfaces, we describe a modification procedure which allows the introduction of surface hydroxyl groups on a well-ordered Al 2O 3 film on NiAl(110). The modification — based on deposition of metallic Al and subsequent water exposure — is characterized using LEED spot-profile analysis (SPA-LEED) and high-resolution photoelectron spectroscopy (PES). Upon Al deposition, small aggregates are formed, which are oxidized completely in the final preparation step as verified via PES. The presence of OH-groups is supported by the appearance of additional Al 2p and O 1s surface features. The origin of oxide core and valence level binding energy shifts induced by the modification procedure is discussed. Growth and metal-substrate interaction of Rh deposited onto the hydroxylated Al 2O 3 film is compared to Rh growth on the non-modified oxide surface. It is shown that at 300 K nucleation preferentially occurs on modified oxide areas (SPA-LEED). Photoelectron spectroscopy of both oxide and rhodium core levels points to a direct chemical interaction between the metal and surface hydroxyl groups.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call