Cobalt tetraaminophthalocyanine was anchored covalently on carbon fiber using an easy and moderate one-step deamination method to obtain a supported heterogeneous catalyst (CoPc-CF). Studies were conducted to understand the CoPc-CF electrode’s electrochemical activity, and some typical organic contaminants including dyes, phenols, and carbamazepine could be removed efficiently in this system. This system exhibited a relatively high electrochemical activity over a wide pH range, and provided a nonradical pathway, which was completely different from the traditional electro-Fenton system. The CoPc-CF electrode has a high electrocatalytic activity over a wide reactant concentration range. Repetitive tests showed that CoPc-CF could maintain a high electrocatalytic activity over several cycles. The content of electrogenerated H2O2 during the electrocatalysis process was determined using a photometric method in which N,N-diethyl-phenylenediamine was oxidized by a peroxidase-catalyzed reaction. The possible reaction mechanism was proposed from an electron paramagnetic resonance spin-trap technique. These results show that the CoPc-CF electrode has potential application in wastewater treatment.
Read full abstract