Abstract

The photoactivity of semiconductor nanostructures makes them potentially useful for environmental remediation and antibacterial applications. Understanding the mechanism underlying the photochemical and photobiological activities of photoexcited semiconductors is of great importance for developing applications and assessing associated risks. In the current work, using electron spin resonance spectroscopy coupled with spin trapping and spin labeling techniques, we comparatively and systematically investigate the abilities of ZnO and ZnS to generate hydroxyl radical, superoxide, singlet oxygen, photoinduced electrons, and oxygen consumption during irradiation. It was found that although ZnO and ZnS, when photoexcited, can produce hydroxyl radical, superoxide, and singlet oxygen, ZnO is more effective than ZnS in producing hydroxyl radical and singlet oxygen while ZnS is more effective than ZnO in generating superoxide. The characterization with ESR spin labeling and oximetry indicates ZnS is about 4 times m...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call