The rotary machines and implements used for the cultivation of agricultural crops do not fully meet the agrotechnical requirements. To determine the parameters of the working tools, the authors studied the absolute trajectory of their movement and classified rotary working tools of agricultural machines according to the special location of their rotation axis, dividing them into four groups and seven subgroups: A – the first group of rotors with a horizontal-transverse axis of rotation; B – the second group of rotors with a vertical axis of rotation; C – the third group of rotors with a longitudinal axis of rotation; D, D, E and F are the fourth group of rotors with the axis of rotation located in space relative to the coordinate system XYZ at angles α, β, and γ. The article presents kinematic analysis results for rotary working tools of classes G, D, E, W having a complex location of the axis of rotation in the space. The analysis of calculating the coordinates of the motion trajectory of rotary working tools showed that for the group of rotors of class G, D, E, the motion trajectory corresponds to a compressed cycloid, and for a rotor of class G, the trajectory represents a helicoid. The obtained motion trajectories of material points of rotary working tools can be used to evaluate the process of interaction of working tools with the soil and plant material, to determine the geometric parameters of working tools, the rotor speed, and the translational speed of an agricultural machine.
Read full abstract