The development of a highly specific recognition electrospray ionization source presents a major challenge for achieving rapid ambient mass spectrometry (AMS) detection of trace harmful substances in complex samples. In this study, we constructed a molecular imprinting nanofiber electrospinning membrane-coated steel substrate (MINMCS) based on the electrospinning strategy. This was designed as a highly specific recognition and enrichment electrospray ionization source module for AMS, where the molecular imprinting nanofiber membrane served as an excellent extraction and enrichment layer. The prepared ionization source demonstrated a sufficient loading capacity for three bioamines (BAs): histamine (HIS), tyramine (TYR), and tryptamine (TRY). With simplified sample pretreatment, this ionization source exhibited sensitivity comparable to that of high performance liquid chromatography-mass spectrometry (HPLC-MS/MS). Moreover, the entire analysis process could be completed within 1 min with acceptable recoveries (83.21-101.80%). In brief, this study introduces a new integrated recognition and enrichment electrospray ionization source for the detection of harmful substances such as bioamines, showcasing significant commercial potential for the rapid detection of foodborne harmful compounds.