Abstract

This paper presents a search for hypothetical massive, charged, long-lived particles with the ATLAS detector at the LHC using an integrated luminosity of 139 fb−1 of proton–proton collisions at sqrt{s} = 13 TeV. These particles are expected to move significantly slower than the speed of light and should be identifiable by their high transverse momenta and anomalously large specific ionisation losses, dE/dx. Trajectories reconstructed solely by the inner tracking system and a dE/dx measurement in the pixel detector layers provide sensitivity to particles with lifetimes down to mathcal{O} (1) ns with a mass, measured using the Bethe–Bloch relation, ranging from 100 GeV to 3 TeV. Interpretations for pair-production of R-hadrons, charginos and staus in scenarios of supersymmetry compatible with these particles being long-lived are presented, with mass limits extending considerably beyond those from previous searches in broad ranges of lifetime.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call