Deep eutectic solvents (DESs) composed of choline chloride (ChCl) and ascorbic acid (AA) were investigated using the molecular dynamics (MD) simulations. The analyses of the configuration, radial distribution function (RDFs), coordination number, spatial distribution function (SDFs), interaction energies, hydrogen bond number, and self-diffusion coefficient of the ChCl/AA binary systems of different concentrations showed that the stability of the hydrogen bond network and the mutual attraction between systems were the strongest at the experimental eutectic concentration (molar ratio of 2:1). In our simulated temperature range from 303.15 to 353.15 K, the hydrogen bonding network of ChCl/AA DES does not undergo considerable alterations, indicating that its stability was insensitive to temperature. In addition, the influence of the water content on the ChCl/AA DES system was further investigated. The simulated results revealed that the water molecules could disrupt the formation of the hydrogen bonding network by occupyin positions that are essential for the formation of hydrogen bonds within the DES system.
Read full abstract