Abstract

Hydroxylammonium nitrate (HAN) has emerged as a promising component in ionic liquid-based spacecraft propellants. However, the physicochemical and structural properties of aqueous HAN have been largely overlooked. The purpose of this study is to investigate the hydrogen bonding in aqueous HAN and understand its implications on these properties and the proton transfer mechanism as a function of concentration. Classical polarizable molecular dynamics simulations have been employed with the APPLE&P force field to analyze the geometry of individual hydrogen bonds and the overall hydrogen-bonding network in various concentrations of aqueous HAN. Radial distribution functions (RDFs) and spatial distribution functions (SDFs) indicate the structural arrangement of the species and their hydrogen bonds. Projections of water density and the orientation of its electric dipole moment near the ions provide insight into the hydrogen-bonding network. The incorporation of water into the hydrogen-bonding network at high ion concentrations occurs via interstitial accommodation around the ions immediately outside the first solvation shell. While ion pairs are observed at all concentrations considered, the frequency of Ha···On hydrogen bonds increases substantially with the ion concentration. The findings contribute to a better fundamental understanding of HAN and the precursors of reactivity, crucial to the development of "green" spacecraft propellants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.