Abstract

Effects of two naturally occurring osmolytes, urea and trimethylamine-N-oxide (TMAO) on the solvation structure of hydrophobic moiety of alanine, glycine, N-methylacetamide and acetamide are investigated by classical molecular dynamics simulations. Our results are analysed in terms of site-site radial distribution functions (RDF), spatial distribution functions (SDF), number of hydrogen bonds, orientation profile, KB integrals, preferential binding coefficient and hydrogen bond dynamics. RDF and SDF showed presence of an extra hydration shell near the hydrophobic unit when TMAO is present in the solution. This hydration shell mainly consists of broken hydrogen bonds. In urea-water solution, intramolecular association is favoured compared to intermolecular association: which is in contrast to the TMAO-water solution. Alanine, glycine, NMA and acetamide showed preferred interactions with the water molecules in presence of TMAO compared to urea. Urea and TMAO both are found to be excluded from the alanine, glycine, NMA and acetamide surface but presence of urea was slightly favoured at higher distances in case of NMA and acetamide. The strong hydrogen bond between TMAO-water increases the hydrogen bond lifetime of other hydrogen bonds in the system. The preferential binding affinity of water with the protein molecules and strong hydrogen bonds are found to be the key reasons for stability in presence of TMAO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call