Abstract

Ab initio molecular dynamics studies have been performed on fluorobenzene, phenol, and aniline, which have the three most electronegative atoms, fluorine, oxygen, and nitrogen, respectively. Radial distribution functions show strong hydrogen bonding in the phenolic –OH group, whereas it is less prominent in the –NH2 group of aniline. Fluorobenzene does not show strong hydrogen bonds as no solvation shell is found between the fluorine atom and different aromatic hydrogens of the molecule. Spatial distribution functions show that the nitrogen atom of aniline interacts with the aromatic plane, the oxygen atom of phenol is concentrated near the –OH group and fluorobenzene’s fluorine atom interacts with the para hydrogen. Liquid phase dimer structures of these systems reveal that perpendicular orientation (Y-shaped) is preferred over parallel ones. Almost half of the total dimer population tends to prefer 90∘±30° angle. H-bond analyses show that fluorobenzene has the longest mean H-bond lifetime for the H-bond between the aromatic hydrogens and the fluorine atoms, whereas the aniline has the least. The mean lifetime between aromatic hydrogens and electronegative atoms increases steadily from aniline to fluorobenzene. Phenolic –OH and amino –NH2 groups show considerably longer mean H-bond lifetime than the aromatic hydrogens. Gas-phase binding energies obtained from quantum chemical calculations show that aniline and phenol dimers have higher binding energy values than the fluorobenzene dimer. Only the phenol dimer shows a perpendicular structure as a stable one, while aniline and fluorobenzene prefer the parallel orientation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.