Abstract
To explore the anion-recognition ability of the phenolic hydroxyl group and the amino hydrogen, we synthesized three different acridinedione (ADD) based anion receptors, 1, 2 and 3, having OH, NH, and combination of OH and NH groups, respectively. Absorption, emission and (1)H NMR spectral studies revealed that receptor 1, having only a phenolic OH group, shows selective deprotonation of the hydroxyl proton towards F(-), which results in an "ON-OFF"-type signal in the fluorescence spectral studies. Receptor 2, which only has an amino hydrogen, also shows deprotonation of the amino hydrogen with F(-), whereas receptor 3 (having both OH and NH groups) shows head-to-tail intermolecular hydrogen bonding of OH and NH groups with F(-) prior to deprotonation. The observation of hydrogen bonding of the OH and NH groups in a combined solution of 1 and 2 with F(-) in a head-to-tail hetero-intermolecular fashion, and the absence of head-to-head and tail-to-tail intermolecular hydrogen bonding in 1 and 2 with F(-), prove that the difference in the acidity of the OH and NH protons leads to the formation of an intermolecular hydrogen-bonding complex with F(-) prior to deprotonation. The presence of this hydrogen-bonding complex was confirmed by absorption spectroscopy, 3D emission contour studies, and (1)H NMR titration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.