A space X is sequentially separable if there is a countable S⊂X such that every point of X is the limit of a sequence of points from S. In 2004, N.V. Velichko defined and investigated concepts close to sequential separability: σ-separability and F-separability. The aim of this paper is to study σ-separability and F-separability (and their hereditary variants) of the space Cp(X) of all real-valued continuous functions, defined on a Tychonoff space X, endowed with the pointwise convergence topology. In particular, we proved that σ-separability coincides with sequential separability. Hereditary variants (hereditarily σ-separability and hereditarily F-separability) coincide with Fréchet–Urysohn property in the class of cosmic spaces.