Abstract

We construct the existence theory for generalized fractional Bessel differential equations and find the solutions in the form of fractional or logarithmic fractional power series. We figure out the cases when the series solution is unique, non-unique, or does not exist. The uniqueness theorem in space Cp is proved for the corresponding initial value problem. We are concerned with the following homogeneous generalized fractional Bessel equation $$\sum\limits_{i = 1}^m {{d_i}{x^{{\alpha _i}}}} {D^{{\alpha _i}}}u\left( x \right) + \left( {{x^\beta } - {v^2}} \right)u\left( x \right) = 0,\,{\alpha _i} >0,\,\beta >0,$$ which includes the standard fractional and classical Bessel equations as particular cases. Mostly, we consider fractional derivatives in Caputo sense and construct the theory for positive coefficients di. Our theory leads to a threshold admissible value for ν2, which perfectly fits to the known results. Our findings are supported by several numerical examples and counterexamples that justify the necessity of the imposed conditions. The key point in the investigation is forming proper fractional power series leading to an algebraic characteristic equation. Depending on its roots and their multiplicity/complexity, we find the system of linearly independent solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.