The control of movement and orientation of gas-phase molecules has become the focus of many research areas in molecular physics. Here, ND3 molecules are polarized in a segmented, curved electrostatic guide and adiabatically aligned inside a rotatable mass spectrometer (MS). Alignment is probed by photoionization using a linearly polarized laser. Rotation of the polarization at fixed MS orientation has the same effect as the rotation of the MS at fixed polarization, proving that the molecular alignment adiabatically follows the MS axis. Polarization-dependent ion signals reveal state-specific populations and allow for a quantification of the aligned sample in the space-fixed reference frame.
Read full abstract