Abstract
Absolute OH- and OD-stretching transition intensities have been calculated for a series of alcohols (methanol, ethanol, 2-propanol, 1-propanol, and tert-butanol) with one-dimensional (1D) and three-dimensional (3D) local mode models. We compare the calculated intensities for the ΔvOH = 1-5 and ΔvOD = 1-3 transitions with experimental values. Potential energy and dipole moment surfaces are calculated at the CCSD(T)-F12a/VDZ-F12 level of theory. The 1D local mode model includes only the OH(D)-stretching mode, whereas the 3D local mode model also includes the CO-stretching and COH(D)-bending modes. We analyze the effect on vibrational intensities of using either a molecule-fixed Eckart frame or a space-fixed Cartesian frame. We find that both Eckart embedding and inclusion of the CO-stretching and COH(D)-bending modes in the local mode model are important for the OH/OD-stretching fundamental transition intensities, but have a minor effect on overtone intensities. The 3D reduced-dimensional local model, when combined with coupled cluster surfaces, accurately predicts OH/OD-stretching transition intensities and wavenumbers, for all alcohols included in this work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.