Abstract

A set of four quaternion matrices is used to represent the equations of finite rotation theory and to describe the kinematics and nonlinear dynamics of an asymmetric rigid body in space. The results obtained are tested in setting up direction-cosine matrices, calculating three-index symbols, establishing the relationship between the components of angular velocity in body-fixed and space-fixed frames of reference, and using a set of three independent rotations. Euler–Lagrange equations and a set of four quaternion matrices are used to construct a block-matrix model describing the nonlinear dynamics of a free asymmetric rigid body in three-dimensional space. The model gives the matrix Euler’s equations of motion and other special cases. Algorithms adapted to use in a numerical experiment are developed

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call